Laser/Hacking: Unterschied zwischen den Versionen
Zeile 251: | Zeile 251: | ||
# Prefix | # Prefix | ||
< 0x75 (u) | < 0x75 (u) | ||
− | < 0x84 < Laser and Min/Max Byte | + | < 0x84 < Laser and Min/Max Byte |
< 0x34 (4) | < 0x34 (4) | ||
Zeile 263: | Zeile 263: | ||
* 0xf4 (Laser 2 MinPower) | * 0xf4 (Laser 2 MinPower) | ||
* 0x02 (Laser 1 MaxPower) | * 0x02 (Laser 1 MaxPower) | ||
− | * 0x72 (Laser 2 | + | * 0x72 (Laser 2 MinPower) |
=== Laserfirmware === | === Laserfirmware === | ||
Nope. | Nope. |
Version vom 4. April 2021, 19:28 Uhr
For now just a unorganized pastebin to document things that don't fit the mastodon account.
Device resolutions
Resolution | Width | Height |
---|---|---|
Physical | 1300 mm | 900 mm |
Cut | 13000 positions | 9000 positions |
Engrave | 51181 points | 35433 points |
Instructions
Cutting
tbd
Engraving
tbd
Rotary Engraving
Get the rotate engrave tool and put it in the lasercutter (in a way where the wide side faces you). Align it to the X axis of the lasercutter. Connect the two cables to the two plugs on the upper right side of the inner workarea (labeled 'rotation'). Flick the Axis Y/Axis U switch on the side of the lasercutter to the 'Axis U' position. Turn the lasercutter on. Test if everything is working by moving the y axis. If the rotate engrave tool moves you're good to go. Move the laser over the object you want to engrave. Be sure that you are exactly in the middle of the object on the y axis. If the laser hits the object, press reset, the laser will move the z axis down. Repeat as many times as needed. In the driver software, enable rotate engrave in the 'Output' Tab. Set circle pulse to 7600 and enter the diameter of the object. Enter the speed an press 'Test'. Ensure that the object does not fall after rotating 360°. Proceed as you would normally when engraving.
Reverse Engineering
Driver (LaserWorks aka RDCAM)
Nope.
Communication Protocol
The protocol can be used in 3 ways.
- USB
- Network
- By saving the job to a file in the driver.
We didn't get the net- to work (haha) so we are using USB right now.
Notation:
< == from the driver > == from the laser
Setup Messages
Before sending the job to the lasercutter the driver sends and receives a few preflight messages. We are unsure if they change when using the Network but they are omitted when saving a job to a file.
Click 'Search'
< 0x69 (i) < 0x34 (4) < 0xb8 < 0x4e (N) > 0x69 (i) > 0xb4 > 0xb8 > 0x4e (N) > 0x36 (6) > 0x2c (,) > 0xb4 > 0x76 (v) > 0x34 (4) < 0x69 (i) < 0x34 (4) < 0x34 (4) < 0x84 > 0x69 (i) > 0xb4 > 0x34 (4) > 0x84 > 0x34 (4) > 0xb2 > 0xd4 > 0x0a > 0x14
Select COM Device
< 0x69 (i) < 0x34 (4) < 0x34 (4) < 0x24 ($) > 0x69 (i) > 0xb4 > 0x34 (4) > 0x24 ($) > 0x34 (4) > 0x34 (4) > 0xb4 > 0x74 (t) > 0x34 (4)
Sending a Job
# Same as first message in 'Click Search' (x2) < 0x69 (i) < 0x34 (4) < 0xb8 < 0x4e (N) > 0x69 (i) > 0xb4 > 0xb8 > 0x4e (N) > 0x36 (6) > 0x2c (,) > 0xb4 > 0x76 (v) > 0x34 (4) < 0x69 (i) < 0x34 (4) < 0xb8 < 0x4e (N) > 0x69 (i) > 0xb4 > 0xb8 > 0x4e (N) > 0x36 (6) > 0x2c (,) > 0xb4 > 0x76 (v) > 0x34 (4) < 0x69 (i) < 0x34 (4) < 0xba < 0x22 (") > 0x69 (i) > 0xb4 > 0xba > 0x22 (") > 0xbe > 0xa4 > 0x58 (X) > 0x34 (4) > 0x34 (4) # Again, same as first message in 'Click Search' < 0x69 (i) < 0x34 (4) < 0xb8 < 0x4e (N) > 0x69 (i) > 0xb4 > 0xb8 > 0x4e (N) > 0x36 (6) > 0x2c (,) > 0xb4 > 0x76 (v) > 0x34 (4) # ??? < 0x69 (i) < 0x34 (4) < 0x38 (8) < 0x34 (4) > 0x69 (i) > 0xb4 > 0x38 (8) > 0x34 (4) > 0x34 (4) > 0xb2 > 0x4e (N) > 0x34 (4) <- This byte changes to 0x40 sometimes... (no idea why, seems to happen when one moves one point of the line in the test job for example.) > 0x34 (4) # Again, same as first message in 'Click Search' < 0x69 (i) < 0x34 (4) < 0xb8 < 0x4e (N) > 0x69 (i) > 0xb4 > 0xb8 > 0x4e (N) > 0x36 (6) > 0x2c (,) > 0xb4 > 0x76 (v) > 0x34 (4)
After this the actual job data is sent by the driver.
Job Data
The job data seems to be structured as follows:
1. [Unknown Data]
- (as of now always 59 bytes)
2. [Speed Data]
- (as of now always 8 bytes)
3. [Power Data x4]
- (as of now always 5 bytes for each of (presumably) [Min Power Laser 1, Max Power Laser 1, Min Power Laser 2, Max Power Laser 2] )
4. [Unknown Data]
5. [Speed Data again, but a little different]
6. [Power Data again, but a little different x4]
7. [Unknown Data]
2. Speed Data
# Prefix (i think, not a 100% on that) 0xfb 0x38 (8) 0x34 (4) 0x34 (4) 0x34 (4) # Value Bytes x3 0x36 (6) 0xc0 0x14
50 mm/s:
0xb2 (178) () 0x36 (54) (6) 0x64 (100) (d)
100 mm/s:
0x36 (54) (6) 0xc0 (192) () 0x14 (20) (�)
1000 mm/s:
0x90 (144) () 0x38 (56) (8) 0x74 (116) (t)
3. Power Data
# Prefix < 0x75 (u) < 0x84 < Laser and Min/Max Byte < 0x34 (4) # Value Bytes x2 < 0x16 < 0x02
The Laser and Min/Max Byte is one of:
- 0x84 (Laser 1 MinPower)
- 0xf4 (Laser 2 MinPower)
- 0x02 (Laser 1 MaxPower)
- 0x72 (Laser 2 MinPower)
Laserfirmware
Nope.