	Applicatives	Monads	Monad Laws	Bibliography

Haskell full of Buzzwords

Martin Heuschober

metalab.at/wiki/Lambdaheads

24. Mai 2013

	Applicatives 0000000			
Inhalt				

Inhalt

- Haskell
 - a bit of syntax
 - polymorphism
 - Functors Applicative Functors Monads
 - Abstraction
 - More Abstraction
 - Setup

- Functors
- Functors
- Functor examples
- profing the functor laws for Maybe
- 3 Applicatives
 - Intro
 - Applicative Functors
 - Again examples
 - another list instance
 - Applicative Law

Haskell 0000000		Applicatives 0000000			
Haske	ell				

- functional
- Iazy
- statically, strongly typed
- abstract ;-)

Haskell ●○○○○○○		Applicatives 0000000			
a bit	of synt	ax			

```
import Blah as Blubb hiding (foo, Foo(..))
type MyFoo = MyFoo1 |MyFoo2 | MyFoo3 {t : : MyFoo, g : : MyFoo}
newtype Bar = Bar {runBar : : b \rightarrow (a,b)}
```

 $a \,$ and $b \,$ are type variables and a main ingredient in Haskell code, e.g. when writing type annotations to functions

```
foo1 :: a \rightarrow [a] foo1 x = [x] -- the list with a single element namely x
```

using a point-free style which is ubiquitous in Haskell code we can formulate this equivalently as

here '(:)' is the cons operator and '[]' denotes the empty-list

Haskell ○●00000		Applicatives 0000000	Monads 000000		Monad Laws 00		Bibliography		
Polymorphism									

Haskells way to express polymorphism is via type-classes

class Fooable a where -- not the Java kind of classes foo :: [a] \rightarrow (a \rightarrow a) \rightarrow a

but similar to Java interfaces (or so I've heard). If something wants to be '*Fooable*' it has to implement this function '*foo*', which takes a list of '*as*' and a function '*f*' and generates something of type '*a*'.

Haskell ○O●○○○○		Applicatives 0000000						
Polymorphism								

We can create instances for type-classes, unless there is already one defined (we will see that for the 'Applicative' type-class for lists later on).

```
instance Foo [] where
foo [] _ = undefined -- should never happen ;-)
foo (x : xs) f = f x
```

Here *undefined* is a special function, which always type-checks but generates a, run-time error if invoked, useful for getting a structure. Another prominent technique can be seen in the last line - where the list is decomposed in *head* and *tail*.

 Haskell
 Functors
 Applicatives
 Monads
 State - an example

 000●000
 000
 000000
 000000
 000

le Monad Lav

Arrows Bibl

Functors - Applicative Functors - Monads

Beginning from this section, all code presented is executable with your favourite Haskell compiler, feel free to load this file into *ghci* and make your own experiments.

Haskell ○○○○●○○		Applicatives 0000000			
Abstr	action				

As one of Haskell's features we listed abstraction, which is only one side of the medal it is also really hard to get your head around. In Haskell we have a great type system and one feature of it is type constructors which take a more basic type and produce a new type. Most prominent the list type [a], but there are also Trees, Vectors, Matrices, Tries and much more (including the kitchen sink). And one thing is we want to modify the values in such a "container". This lead to the discovery of Functors, originating from the rather obscure mathematical branch of category theory.

Haskell ○○○○○●○		Applicatives 0000000	Monads 000000	Monad Laws 00	Bibliography
More	Abstra	action			

Another problem was how to do chain stateful or even worse actions with side effects together. The first idea was to use continuation-passing style, but being involved with category theory already, Phil Wadler came up with the term of *Monads*. Later on concepts like *ApplicativeFunctors*, *Arrows* and much more were added

Haskell ○○○○○○●		Applicatives 0000000			
Setup)				

import Prelude hiding (Functor, Monad, Maybe(..), fmap, (>>=),(

We start with importing the standard library *Prelude*, where we hide all operators, which we will define later on ourselves.

	Functors ●○○	Applicatives 0000000			
Funct	tors				

The first solution we see is the class *Functor*

class Functor f where fmap : : (a \rightarrow b) \rightarrow f a \rightarrow f b

And though Haskell cannot enforce it, every instance of *Functor* should satisfy these two laws:

 $\begin{aligned} \mathrm{fmap}(\mathrm{id}) &= \mathrm{id} \\ \mathrm{fmap}(g) \circ \mathrm{fmap}(h) &= \mathrm{fmap}(g \circ h) \end{aligned}$

	Functors ○●○	Applicatives 0000000	Monads 000000	Monad Laws 00	Bibliography
Funct	or - ex	amples			

The first and most obvious Functor we have is the list type

```
instance Functor [] where
   fmap = map
```

Another example is the type of Maybe, which indicates a state of failure or success

data Maybe a = Nothing | Just a

and we make it an instance of *Functor* by

```
instance Functor Maybe where
  fmap f Nothing = Nothing
  fmap f (Just a) = Just (f a)
```

Haskell Functors

Applicatives

Mona 0000 State - an examp 000 Monad Laws

Bibliograph

profing the functor laws for Maybe

TODO

	Applicatives ●○○○○○○			
Intro				

A more recent development (than functors and monads) is the class of *ApplicativeFunctors* or short *Applicatives*. Which came from the need of applying functions from inside a "container". Let's say we have a list of functions $[f_1, ..., f_9]$ and want to apply these to another list of [1...3]. If we only have plain old *Functor* no way we can do that - so we define:

		Applicatives ○●○○○○○			
Appli	cative	Functors			

```
class (Functor f) \Rightarrow Applicative f where
pure : : a \rightarrow f a
\langle \langle * \rangle \rangle : : f (a \rightarrow b) \rightarrow (f a \rightarrow f b)
```

Note that the first function could also have the names return, singleton, unit point. We will name the second function apply, which gave this type-class its name. As we have the class constraint of f being a *Functor* we introduce the symbol of

which leads to a more readable code, if you have gotten used to it.

		Applicatives	Monads 000000	Monad Laws 00	Bibliography
Agair	n exam	ples			

```
instance Applicative [] where
pure x = [x]
fs < * > xs = [f x | f \leftarrow fs, x \leftarrow xs]
```

And for the Maybe type

instance Applicative Maybe where
 pure a = Just a
 (Just f) < * > (Just a) = Just (f a)

(ロ > < 昼 > < 豆 > < 豆 >) へ ()

		Applicatives			
anoth	ner list	instance			

To prevent clashes from happening we define:

```
newtype ZipList a = ZipList { getZipList :: [a] }
```

this is a "tabula rasa" version of the type [a], all associated instances are forgotten. So we have to make ZipList an instance of *Functor* by

```
instance Functor ZipList where
   fmap f (ZipList zs) = ZipList (map f zs)
```

and an instance of Applicative

```
instance Applicative ZipList where
   pure z = ZipList (repeat z)
   ZipList fs < * > ZipList zs = ZipList (zipWith ($) fs zs)
```

		Applicatives ○○○○●○○			
Appli	cative	Law			

Again we have a law for the Applicative type-class

$$f < \$ > xs = (\operatorname{pure} f) < \ast > xs$$

and of course we have all the previous laws for functors.

The module Control.Applicative provides the following helper functions: A variant of $\langle * \rangle$ with the arguments reversed.

(<**>) : : Applicative f \Rightarrow f a \rightarrow f (a \rightarrow b) \rightarrow f b (<**>) = liftA2 (flip (\$))

Lift a function, this function may be used as a value for ${\rm fmap}$ in a $\mathit{Functor}$ instance.

liftA :: Applicative f \Rightarrow (a \rightarrow b) \rightarrow f a \rightarrow f b liftA f a = pure f < * > a

Lift a binary function to actions.

```
\begin{array}{rcl} \mbox{liftA2} & : & \mbox{Applicative } f \ \Rightarrow \ (a \! \rightarrow \! b \! \rightarrow \! c) \! \rightarrow \! f \ a \! \rightarrow \! f \ b \! \rightarrow \! f \ c \\ \mbox{liftA2} \ f \ a \ b & = f < \$ > a \! < \! \ast > b \end{array}
```

and furthermore liftA3 and optional.

		Applicatives ○○○○○○●	Monads 000000	Monad Laws 00	Bibliography
And r	now for	[,] the juic	y part		

Functor and Applicative are clear so far ??

	Applicatives 0000000	Monads ●○○○○○		
Intro				

Monads were brought to solve the problem of IO in Haskell though before that people used a continuation-passing style to chain actions after one another. Btw it turns out there is a Monad called *Cont*, the continuation monad, which has some universal property, but unfortunately I had no time to investigate that maybe more the next time about that.

From a compiler's point of view a monad is nothing more than a type class, but as monads are ubiquitous in Haskell code, almost every program has some part in the IO Monad, there is some syntactic sugar provided - the so called do notation. Which we will meet in a few slides.

		Applicatives 0000000	Monads ○●○○○○		
Mona	ads				

The most famous dreaded concept when learning Haskell

```
class Monad m where
return : : a \rightarrow m a
(>>=) : : m a \rightarrow (a \rightarrow m b) \rightarrow m b -- bind
(>>) : : m a \rightarrow m b \rightarrow m b
f >> b = f >>= (\lambda_{-} \rightarrow b)
fail : : String \rightarrow m a
```

I will show that every monad is an applicative, which could be included in the class definition as a constraint, but the use of monads pre-dates the use of both functors and applicatives, so one came to the definition above. Note that the definition of the function (>>) is optional as it can be implemented by using (>>=) it can be thought of as follows: the side effects of f are executed whilst the result is thrown away.

		Applicatives 0000000	Monads ○○●○○○		
An ex	kample	- Please	<u>e</u>		

The Maybe Monad:

```
instance Monad Maybe where
  return = Just -- point free style
  Nothing >>= f = Nothing
  Just x >>= f = f x
  fail _ = Nothing
```

and applied

```
Just 3 \gg (\lambda x \rightarrow Just(x+3)) \gg (\lambda x \rightarrow Just(y*3))
> Just 12
Nothing \gg (\lambda x \rightarrow Just(x+3)) \gg (\lambda x \rightarrow Just(y*3))
> Nothing
Just 3 \gg (\lambda x \rightarrow Just(x+3)) \gg (\lambda x \rightarrow Just(x*3) \gg return x)
> Just 6
```

・ロト・酉 ト・ヨ ・ ヨ・ クタぐ

		Applicatives 0000000	Monads ○○○●○○	Monad Laws 00	Bibliography
Do-N	otatior	1			

As one can see the examples above are a bit to work your head around - so to make Haskell a bit more beginner-friendly the Do-Notation was introduced, this is Especially useful within the *IO* monad.

- ロ ト 4 母 ト 4 き ト 4 き ト う や つ へ ()

		Applicatives 0000000	Monads ○○○○●○		
Do-N	otatior	۱			

and we have the basic transformations

 $do e \longrightarrow e$ $do\{e; stmts\} \longrightarrow e >> do\{stmts\}$ $do\{v \leftarrow e; stmts\} \longrightarrow e >> = \lambda v \rightarrow do\{stmts\}$ $do\{let decls; stmts\} \longrightarrow let decls in do\{stmts\}$

		Applicatives 0000000	Monads ○○○○○●	Monad Laws 00	Bibliography
Do-N	otatior	l			

so the function above could be alternatively written in the form

```
iofunction' :: IO ()
iofunction' = putStrLn "enter your name" >>
getLine >>= \lambda a \rightarrow
let caps = a + + !!! in
putStrLn ("Hello my friend " ++ caps)
```

Note: actually this code is not working - remember we have hidden (») and (»=)

All of the code in this example will be available seperately

newtype State s a = State {runState : : s \rightarrow (a, s)}

and we can make State an instance of Monad

```
instance Monad (State s) where
return x = State $ \lambdas \rightarrow (x,s)
(State h) >>= f = \lambdas \rightarrow let (a, newState) = h s
(State g) = f a
in g newState
```

from learnyouahaskell.com we take the example. Of a Stack State

		Applicatives 0000000	Monads 000000	State - an example ○●○	Monad Laws 00	Bibliography
State	- exam	nple				

and

type Stack = [Int]

for such a stack we can define operations

pop : : State Stack Int pop = state $\lambda(x:xs) \rightarrow (x, xs)$ push : : Int \rightarrow State Stack () push a = state $\lambda xs \rightarrow ((),a:xs)$

(ロト 4 酉 ト 4 亘 ト 4 恒 ト 4 日)

		Applicatives 0000000	Monads 000000	State - an example 00●	Monad Laws 00	Bibliography
State	e - exar	nple				

and

or equivalently

stackManip' :: State Stack Int
stackManip' = push 3 >> pop >> pop

| ロ ト 4 母 ト 4 三 ト 4 旦 ト 9 오 0

		Applicatives 0000000		Monad Laws ●0	
Mona	ad laws				

Monad has the following laws

 $\begin{aligned} return \; a >>= f = fa \\ m >>= return = m \\ m >>= (\lambda x \to kx >>= h) = (m >>= k) >>= h \\ fmap \; f \; xs = xs >>= return \circ f = liftM \; f \; xs \end{aligned}$

		Applicatives 0000000		Monad Laws ⊙●	
Mona	ad laws				

or with a helper function

$$\begin{array}{l} return \; a >=> f = f \\ f >=> return = f \\ (f >=> g) >=> h = f >=> (g >=> h) \end{array}$$

		Applicatives 0000000	Monads 000000	Monad Laws 00	Arrows	Bibliography
Arrow	/S					

we will see next(?) time

		Applicatives 0000000			Bibliography
Biblic	ography	/			

- www.learnyouahaskell.com
- Typeclassopedia Brent Yorgey (in TheMonadReader 13)
- www.haskell.org