
Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Haskell full of Buzzwords

Martin Heuschober

metalab.at/wiki/Lambdaheads

24. Mai 2013

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Inhalt
1 Haskell

a bit of syntax
polymorphism
Functors - Applicative Functors - Monads
Abstraction
More Abstraction
Setup

2 Functors
Functors
Functor - examples
profing the functor laws for Maybe

3 Applicatives
Intro
Applicative Functors
Again examples
another list instance
Applicative Law
Some extra functions
And now for the juicy part

4 Monads
Intro
Monads
An example - Please
Do-Notation

5 State - an example
State - example

6 Monad Laws
Monad laws

7 Arrows
8 Bibliography

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Haskell

functional
lazy
statically, strongly typed
abstract ;-)

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

a bit of syntax

import Blah as Blubb hiding (foo, Foo(..))
type MyFoo = MyFoo1 ∣ MyFoo2 ∣ MyFoo3 {t ∶ ∶ MyFoo, g ∶ ∶ MyFoo}
newtype Bar = Bar {runBar ∶ ∶ b → (a,b)}

𝑎 and 𝑏 are type variables and a main ingredient in Haskell code,
e.g. when writing type annotations to functions

foo1 ∶ ∶ a → [a]
foo1 x = [x] -- the list with a single element namely x

using a point-free style which is ubiquitous in Haskell code we can
formulate this equivalently as

foo2 ∶ ∶ a → [a]
foo2 = (∶ [])

here ‘(∶)’ is the cons operator and ‘[]’ denotes the empty-list

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Polymorphism

Haskells way to express polymorphism is via type-classes
class Fooable a where -- not the Java kind of classes

foo ∶ ∶ [a] → (a → a) → a

but similar to Java interfaces (or so I’ve heard). If something wants
to be ‘𝐹𝑜𝑜𝑎𝑏𝑙𝑒’ it has to implement this function ‘𝑓𝑜𝑜’, which
takes a list of ‘𝑎𝑠’ and a function ‘𝑓 ’ and generates something of
type ‘𝑎’.

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Polymorphism

We can create instances for type-classes, unless there is already
one defined (we will see that for the ‘𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒’ type-class for
lists later on).

instance Foo [] where
foo [] _ = undefined -- should never happen ;-)
foo (x ∶ xs) f = f x

Here 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 is a special function, which always type-checks
but generates a, run-time error if invoked, useful for getting a
structure. Another prominent technique can be seen in the last line
- where the list is decomposed in ℎ𝑒𝑎𝑑 and 𝑡𝑎𝑖𝑙.

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Functors - Applicative Functors - Monads

Beginning from this section, all code presented is executable with
your favourite Haskell compiler, feel free to load this file into 𝑔ℎ𝑐𝑖
and make your own experiments.

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Abstraction

As one of Haskell’s features we listed abstraction, which is only one
side of the medal it is also really hard to get your head around.
In Haskell we have a great type system and one feature of it is type
constructors which take a more basic type and produce a new type.
Most prominent the list type [𝑎], but there are also 𝑇 𝑟𝑒𝑒𝑠,
𝑉 𝑒𝑐𝑡𝑜𝑟𝑠, 𝑀𝑎𝑡𝑟𝑖𝑐𝑒𝑠, 𝑇 𝑟𝑖𝑒𝑠 and much more (including the kitchen
sink). And one thing is we want to modify the values in such a
“container”. This lead to the discovery of 𝐹𝑢𝑛𝑐𝑡𝑜𝑟𝑠, originating
from the rather obscure mathematical branch of category theory.

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

More Abstraction

Another problem was how to do chain stateful or even worse
actions with side effects together. The first idea was to use
continuation-passing style, but being involved with category theory
already, Phil Wadler came up with the term of 𝑀𝑜𝑛𝑎𝑑𝑠. Later on
concepts like 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑜𝑟𝑠, 𝐴𝑟𝑟𝑜𝑤𝑠 and much more were
added

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Setup

import Prelude hiding (Functor , Monad, Maybe(..), fmap, (>>=),(>>))

We start with importing the standard library 𝑃𝑟𝑒𝑙𝑢𝑑𝑒, where we
hide all operators, which we will define later on ourselves.

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Functors

The first solution we see is the class 𝐹𝑢𝑛𝑐𝑡𝑜𝑟
class Functor f where

fmap ∶ ∶ (a → b) → f a → f b

And though Haskell cannot enforce it, every instance of 𝐹𝑢𝑛𝑐𝑡𝑜𝑟
should satisfy these two laws:

fmap(id) = id
fmap(𝑔) ∘ fmap(ℎ) = fmap(𝑔 ∘ ℎ)

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Functor - examples

The first and most obvious Functor we have is the list type
instance Functor [] where

fmap = map

Another example is the type of 𝑀𝑎𝑦𝑏𝑒, which indicates a state of
failure or success

data Maybe a = Nothing ∣ Just a

and we make it an instance of 𝐹𝑢𝑛𝑐𝑡𝑜𝑟 by
instance Functor Maybe where

fmap f Nothing = Nothing
fmap f (Just a) = Just (f a)

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

profing the functor laws for Maybe

TODO

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Intro

A more recent development (than functors and monads) is the
class of 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑜𝑟𝑠 or short 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒𝑠. Which came
from the need of applying functions from inside a “container”.
Let’s say we have a list of functions [𝑓1, …, 𝑓9] and want to apply
these to another list of [1…3]. If we only have plain old 𝐹𝑢𝑛𝑐𝑡𝑜𝑟
no way we can do that - so we define:

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Applicative Functors

class (Functor f)⇒ Applicative f where
pure ∶ ∶ a → f a
(< ∗ >) ∶ ∶ f (a → b) → (f a → f b)

Note that the first function could also have the names return,
singleton, unit point. We will name the second function apply,
which gave this type-class its name. As we have the class
constraint of 𝑓 being a 𝐹𝑢𝑛𝑐𝑡𝑜𝑟 we introduce the symbol of

(< $ >) ∶ ∶ (Applicative f) ⇒ (a → b) → (f a → f b)
(< $ >) = fmap

which leads to a more readable code, if you have gotten used to it.

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Again examples

instance Applicative [] where
pure x = [x]
fs < ∗ > xs = [f x ∣ f ← fs, x ← xs]

And for the 𝑀𝑎𝑦𝑏𝑒 type
instance Applicative Maybe where

pure a = Just a
(Just f) < ∗ > (Just a) = Just (f a)

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

another list instance

To prevent clashes from happening we define:
newtype ZipList a = ZipList { getZipList ∶ ∶ [a] }

this is a “tabula rasa” version of the type [𝑎], all associated
instances are forgotten. So we have to make 𝑍𝑖𝑝𝐿𝑖𝑠𝑡 an instance
of 𝐹𝑢𝑛𝑐𝑡𝑜𝑟 by

instance Functor ZipList where
fmap f (ZipList zs) = ZipList (map f zs)

and an instance of 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒
instance Applicative ZipList where

pure z = ZipList (repeat z)
ZipList fs < ∗ > ZipList zs = ZipList (zipWith ($) fs zs)

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Applicative Law

Again we have a law for the Applicative type-class

𝑓 < $ > 𝑥𝑠 = (pure 𝑓) < ∗ > 𝑥𝑠

and of course we have all the previous laws for functors.

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Some extra functions

The module 𝐶𝑜𝑛𝑡𝑟𝑜𝑙.𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 provides the following helper
functions: A variant of < ∗ > with the arguments reversed.

(<∗∗>) ∶ ∶ Applicative f ⇒ f a → f (a → b) → f b
(<∗∗>) = liftA2 (flip ($))

Lift a function, this function may be used as a value for fmap in a
𝐹𝑢𝑛𝑐𝑡𝑜𝑟 instance.

liftA ∶ ∶ Applicative f ⇒ (a → b) → f a → f b
liftA f a = pure f < ∗ > a

Lift a binary function to actions.
liftA2 ∶ ∶ Applicative f ⇒ (a→b→c)→f a→f b→f c
liftA2 f a b = f < $ > a < ∗ > b

and furthermore liftA3 and optional.

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

And now for the juicy part

Functor and Applicative are clear so far ??

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Intro

𝑀𝑜𝑛𝑎𝑑𝑠 were brought to solve the problem of IO in Haskell -
though before that people used a continuation-passing style to
chain actions after one another. Btw it turns out there is a Monad
called 𝐶𝑜𝑛𝑡, the continuation monad, which has some universal
property, but unfortunately I had no time to investigate that -
maybe more the next time about that.
From a compiler’s point of view a monad is nothing more than a
type class, but as monads are ubiquitous in Haskell code, almost
every program has some part in the 𝐼𝑂 Monad, there is some
syntactic sugar provided - the so called 𝑑𝑜 notation. Which we will
meet in a few slides.

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Monads

The most famous dreaded concept when learning Haskell
class Monad m where

return ∶ ∶ a → m a
(>>=) ∶ ∶ m a → (a → m b) → m b -- bind
(>>) ∶ ∶ m a → m b → m b
f >> b = f >>= (𭜆_ → b)
fail ∶ ∶ String → m a

I will show that every monad is an applicative, which could be
included in the class definition as a constraint, but the use of
monads pre-dates the use of both functors and applicatives, so one
came to the definition above. Note that the definition of the
function (>>) is optional as it can be implemented by using
(>>=) it can be thought of as follows: the side effects of 𝑓 are
executed whilst the result is thrown away.

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

An example - Please

The 𝑀𝑎𝑦𝑏𝑒 Monad:
instance Monad Maybe where

return = Just -- point free style
Nothing >>= f = Nothing
Just x >>= f = f x
fail _ = Nothing

and applied
Just 3 >>= (𭜆x→ Just(x+3)) >>= (𭜆x → Just (y∗3))
> Just 12
Nothing >>= (𭜆x→ Just(x+3)) >>= (𭜆x → Just (y∗3))
> Nothing
Just 3 >>= (𭜆x→ Just(x+3)) >>= (𭜆x→ Just (x∗3) >> return x)
> Just 6

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Do-Notation

As one can see the examples above are a bit to work your head
around - so to make Haskell a bit more beginner-friendly the
Do-Notation was introduced, this is Especially useful within the 𝐼𝑂
monad.

iofunction ∶ ∶ IO ()
iofunction = do putStrLn "enter your name"

a ← getLine
let caps = a++"!"
putStrLn ("Hello my friend " ++ caps)

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Do-Notation

and we have the basic transformations

do 𝑒 ⟶ 𝑒
do{𝑒; 𝑠𝑡𝑚𝑡𝑠} ⟶ 𝑒 >> do{𝑠𝑡𝑚𝑡𝑠}

do{𝑣 ← 𝑒; 𝑠𝑡𝑚𝑡𝑠} ⟶ 𝑒 >>= 𝜆𝑣 → do{𝑠𝑡𝑚𝑡𝑠}
do{let 𝑑𝑒𝑐𝑙𝑠; 𝑠𝑡𝑚𝑡𝑠} ⟶ let 𝑑𝑒𝑐𝑙𝑠 in do{𝑠𝑡𝑚𝑡𝑠}

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Do-Notation

so the function above could be alternatively written in the form
iofunction ' ∶ ∶ IO ()
iofunction ' = putStrLn "enter your name" >>

getLine >>= 𭜆a →
let caps = a++"!" in
putStrLn ("Hello my friend " ++ caps)

Note: actually this code is not working - remember we have hidden
(») and (»=)

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

State - example

All of the code in this example will be available seperately
newtype State s a = State {runState ∶ ∶ s → (a, s)}

and we can make 𝑆𝑡𝑎𝑡𝑒 an instance of 𝑀𝑜𝑛𝑎𝑑
instance Monad (State s) where

return x = State $ 𭜆s → (x,s)
(State h) >>= f = 𭜆s → let (a, newState) = h s

(State g) = f a
in g newState

from learnyouahaskell.com we take the example. Of a Stack
State

learnyouahaskell.com

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

State - example

and
type Stack = [Int]

for such a stack we can define operations
pop ∶ ∶ State Stack Int
pop = state $ 𭜆(x ∶ xs) → (x, xs)

push ∶ ∶ Int → State Stack ()
push a = state $ 𭜆xs → ((),a ∶ xs)

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

State - example

and
stackManip ∶ ∶ State Stack Int
stackManip = do push 3

pop
pop

or equivalently
stackManip ' ∶ ∶ State Stack Int
stackManip ' = push 3 » pop » pop

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Monad laws

Monad has the following laws

𝑟𝑒𝑡𝑢𝑟𝑛 𝑎 >>= 𝑓 = 𝑓𝑎
𝑚 >>= 𝑟𝑒𝑡𝑢𝑟𝑛 = 𝑚

𝑚 >>= (𝜆𝑥 → 𝑘𝑥 >>= ℎ) = (𝑚 >>= 𝑘) >>= ℎ
𝑓𝑚𝑎𝑝 𝑓 𝑥𝑠 = 𝑥𝑠 >>= 𝑟𝑒𝑡𝑢𝑟𝑛 ∘ 𝑓 = 𝑙𝑖𝑓𝑡𝑀 𝑓 𝑥𝑠

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Monad laws

or with a helper function
(>=>) ∶ ∶ (Monad m) ⇒ (a → m b) → (b → m c) → a → m c
(f >=> g) x = return x >>= g >>= f

𝑟𝑒𝑡𝑢𝑟𝑛 𝑎 >=> 𝑓 = 𝑓
𝑓 >=> 𝑟𝑒𝑡𝑢𝑟𝑛 = 𝑓

(𝑓 >=> 𝑔) >=> ℎ = 𝑓 >=> (𝑔 >=> ℎ)

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Arrows

we will see next(?) time

Haskell Functors Applicatives Monads State - an example Monad Laws Arrows Bibliography

Bibliography

www.learnyouahaskell.com
Typeclassopedia - Brent Yorgey (in TheMonadReader 13)
www.haskell.org

www.learnyouahaskell.com

	Haskell
	a bit of syntax
	polymorphism
	Functors - Applicative Functors - Monads
	Abstraction
	More Abstraction
	Setup

	Functors
	Functors
	Functor - examples
	profing the functor laws for Maybe

	Applicatives
	Intro
	Applicative Functors
	Again examples
	another list instance
	Applicative Law
	Some extra functions
	And now for the juicy part

	Monads
	Intro
	Monads
	An example - Please
	Do-Notation

	State - an example
	State - example

	Monad Laws
	Monad laws

	Arrows
	Bibliography

