CNC-Fräse: Unterschied zwischen den Versionen

aus Metalab Wiki, dem offenen Zentrum für meta-disziplinäre Magier und technisch-kreative Enthusiasten.
Zur Navigation springenZur Suche springen
Zeile 285: Zeile 285:
<math>v_f = n \cdot f_z \cdot z</math> and <math>v_c = \pi \cdot d \cdot n \cdot \frac{1}{1000}</math>
<math>v_f = n \cdot f_z \cdot z</math> and <math>v_c = \pi \cdot d \cdot n \cdot \frac{1}{1000}</math>
To have cutting speed in m/min instead of mm/min you need to divide by 1000.
To have cutting speed in m/min instead of mm/min you need to divide by 1000.
A third formular gives you an estimation how much cm³ you can remove per minute: <math>V_t = a_e \cdot a_p \cdot v_f \cdot \frac{1}{1000}</math>.
A third formular gives you an estimation how much cm³ you can remove per minute: <math>Q = a_e \cdot a_p \cdot v_f \cdot \frac{1}{1000}</math>.


=How to=
=How to=

Version vom 19. Januar 2015, 20:18 Uhr

Language: English


CNC-Fräse
CNC Front 20140827.jpeg
Eigentümer: Metalab, some Parts of the machine are held private
Status: Aktiv
Erfordert Einschulung: Ja
Erfordert Authentisierung: Nein
Kostet:
Hilfsbereite: CNC Mailing List

WARNING: Do not use this machine if you have not had an official introduction to the workflow of this specific machine. It is quite complex and working with this device can easily result in a visit to the hospital...

CNC aka the Geil-o-Mat

What is it? It is a CNC (Computerized Numeric Control) Machine, which is located in the Heavy Machinery Department of the Metalab.

Technical Outline:

  • Spindle speed: 6000 - 24000 min^-1
  • Tool Size: 1mm up to 8mm shank, also 1/8" shanks
  • Maximum step speed: 2000 mm*min^-1 (3600mm*min^-1 for G0, z-axis max 1200mm*min^-1)
  • Maximum Workpiece Dimension: about 725mm * 395mm (X*Y). The height depends on your workpiece, millhead and where do you fix it!
  • Cooling: Air (or liquids by hand)
  • Clamping: Various - depends on your job
  • Software: Runs via LinuxCNC (an Open Source CNC Software)

For projects results of this machine, please visit http://geilomat.soup.io/

Ask on our Mailinglist for help: https://lists.metalab.at/mailman/listinfo/cnc


Standard Procedure

Warning Sign which is now implemented in the geilomat

There are some important steps to take, otherwise you can destroy everything - even the earth... If you don't switch on the things in this particular order it can happen that the machine does things out of nowhere e.g. moves or turns on the spindle!!!

Start Up

  • Start CNC PC (dont turn on the G4 (The "G4 Case" stepper control thing), neither the FU)
  • Start LinuxCNC
  • Check if the "Notaus" is physically triggered on the machine (Button is pressed)
  • Now power on the G4
  • Now plug in the FU ("Frequenzumformer")
    • Wait until the FU is booted
    • Check if 100.0 Hz is set on the screen of the FU
      • Otherwise rotate the rotary encoder that it is 100.0Hz
  • Now remove "Notaus" from the CNC
  • Power on the Machine inside LinuxCNC
  • Move near Homing position
  • Home the machine
  • Warm up the Spindle as described here in the wiki

Now the machine is ready to use.

For milling the spindle needs to be warm. The manual says that you should first let the spindle run for about 1 minute on 6000rpm, then increment by 6000rpm for 1 minute until you reached your destination speed. If the spindle wasn't used for longer than one week, you should double that time. So better is to let it run for two minutes on each speed.

There is a sample code in the GCode Section

Power Down

  • Move Machine in a position where you can easily clean it and remove millheads
  • Press Emergency Stop
  • Plug out VFD
  • Shut down G4
  • Exit LinuxCNC
  • Power off PC
  • Remove Millhead and Clamp
  • Clean the machine-bed and everything else.

Wie Spanne ich ein Werkzeug richtig ein

Wahl der richtigen Spannzange

Der Spannzangensatz ist zwischen 1mm und 7mm auf 0.5mm gestuft. Stimmt der Nenndurchmesser des Schafts mit dem Nenndurchmesser ein Zange überein, dann nimmt man die. Für Zwischenwerte die nächst größere Spannzange. Für 1/8-Zoll-Schäfte sind eigene Zangen vorhanden, für 1/4-Zoll leider nur die 6,5er-Zange Der kleinste Schaft, den ich mich in die 1mm-Zange spannen traue ist 0.7mm

Überwurfmutter

Wie auch bei der Kress-Spannzange ist als erstes die Spannzange in die Spindelmutter (Überwurfmutter) einzurasten. Die Zange sitzt richtig, wenn ihr Aussenende (nahezu) plan zur Mutter ist (auch nach dem Aufschrauben auf die Spindel prüfen, bevor man fest anzieht). (Bei genauer Betrachtung der Mutter fällt auf, dass der Bund, der in den Einstich der Spannzange einrastet exzentrisch zur Achse der Mutter ist. Das ist Absicht und erleichtert das Einrasten.)

Einbau des Werkzeuges

Das Werkzeug in die Spannzange (in der Mutter) einstecken Manche Fräser haben eine Flachstelle am Schaft. Die Enden der Spannzange sollten nicht in diesem Loch zu liegen kommen, da sonst die Zange asymmetrisch spannt und eventuell beschädigt wird. (Das innere Ende Spannfläche muss nicht das Ende des gesamten Körpers sein, manche Zangen sind abgesetzt) Bis 7mm ist es möglich, den Werkzeugschaft durch die Zange in die Spindel zu stecken. Bei der 8er-Zange geht das nicht!

Montage des Werkzeuges

Die Zange mit dem Werkzeug in die Spindel einsetzen und Mutter aufschrauben Da die Zange im offenen Zustand, speziell bei Bohrern, die etwas kleineren Schaftdurchmesser haben, das Werkzeug nicht halten kann, folgen die Werkzeuge gern der Schwerkraft. Man braucht einen 13er-Schlüssel für die Spindelachse, einen 17er für die Mutter und eine 3. Hand, um das Schneidwerkzeug zu halten. Oder doch nicht? Wenn man die Y-Achse und Z-Achse geschickt positioniert, kann man den 13er auf die Schleppkette auflegen und gegen das Portal lehnen. Alternativ kann man einen Holzblock unter das Werkzeug stellen. Es schadet generell nicht, bei offenem Arbeitsraum-Boden (so wie jetzt wo ich oft werkel) eine Holzplatte unter der Spindel am Boden aufzulegen, falls das Werkzeug doch "abpascht" (beim Ausspannen!).

die Mutter anziehen

Wie oben erwähnt jetzt noch mal den richtigen Sitz der Zange prüfen! Das Gewinde der Mechatron-Spindel ist sehr fein, daher erzeugt es schon bei mäßigem Drehmoment recht hohe Axialkräfte, die letztendlich die Zange schließen. Das erzeugt Radialkräft auf den Werkzeugschaft, die über Reibung das Werkzeug halten. Wie wir alle wissen, ist die Flächenpressung, die ein Werkstoff erträgt begrenzt und gleich Kraft durch Fläche. Die Pressfläche ist bei kleinen Zangen viel kleiner als bei großen, daher speziell diese mit Gefühl anziehen. Wenn alle Spiele aus der Anordnung verschwunden sind, gibt es einen Punkt, wo das Anziehen "hart" wird. Über diesen Punkt hinaus sollte man nicht gehen.


GCode

See also this Page for more GCodes: CNC/GCode‎


Example Gcode Header for Geilomat:

G21      ; use mm
G90      ; absolute coordinates
G54      ; use G54 coordinate system
G40      ; turn radius compensation off
G17      ; choose x,y plane
G80      ; Cancel Motion Modes
G94      ; movement speed is in mm/min
G49      ; turn cutter legth compensation off
G0 Z10   ; Go to saftyplane
M3       ; turn on spindle
S6000    ; 6000 min-1 spindle speed
G4 P120  ; wait 2 minutes until spindle is warm
S12000   ; add another 6000min-1
G4 P120  ; again two minute wait
(repeat steps above (S + G4) until target speed is reached)
F500     ; 500mm/minutes movement speed

(your program starts here... now you can do things like)
G0 X0 Y0 ; go to your 0,0 point rapidly
G1 Z0    ; go to Z0 with 500mm/min (as set with F command)

Typical gcode Tail:

; the tail
G0 Z10   ; retract from workplane - safty plane
M30      ; end program

Parameters for typical jobs

Milling aluminium - the right parameters are key to sucess.

Please note that these Values are produced under different circumstances - like how many "Schneiden" a mill has or what kind of mill you are using! Please use also "Drehzahlrechner" for looking up proper values.

Please be aware that, like with the lasercutter, not every material can be cut and for each material you have certain parameters. These parameters are in the first place a result of the tool you use but also depends on chemical and mechanical compound of the material you need to cut. For example there are a lot of aluminium types, like AlMgSiPb or AlCuBiPb which is very good for milling and also pure Al99,5 which is very very bad for milling!!! This counts for all types of material, also for wood! e.g. MDF has very different cutting parameters than birch wood...

Material Head Diameter mm Cutting Depth mm (a_p) Sidewards depth in % of diameter (a_e) Spindle Speed Feed Rate mm/min Comment
MDF 8 2 ? 12000 30 MDF is usually too thick to be milled with our normal milling heads, so we're using a bigger (8mm diameter) end mill. Plunge 10.
Wood 3 5 50% 12000-14000 >300 guessed proposal
Wood 0.8 4 100% 12000-14000 ~250 guessed proposal
Wood 3 0.8 50% 12000 600 looked good, material was plywood 8mm
Wood (Leimholz Fichte) 6mmZ3 2 100% 23000 1000 Works fine, also tested 0.5, 1.0 and 1.5mm
Wood (Leimholz Fichte) 6mmZ3 6 1mm 23000 1000 Für Kanten, Stege auf der Holzplatte brechen aus (Achtung)
Aluminium 6 0.25 6mm 10000 1100 Vierschneider, schleppender Schnitt - no external cooling
Aluminium 6 0.25 6mm 10000 650 Zweischneider, schleppend und ziehender schnitt - no external cooling
PCB engrave 0.1-0.3 30deg 0.3 0.035 12000 1000 tested in epoxy-pcb
PCB drill 0.9 -2.5 0.5 14000 400 tested in epoxy-pcb
PCB milling 0.5 0.035 (isolate) 0.25 (mill) 100% 22000 400 tested in FR4
Plexiglass Front door engrave 0.1 30deg? 1 10000 20 Plunge 20, toolsize cambam 0.3
Plexiglass egg 1.5 30deg? 0.5 14000 100 Plunge 30, toolsize cambam 1.5 : 4mm thick plexiglass 400x300
Plexiglas Portrait 0.1 30deg? 4 10000 ? 0.3mm raster, Custom tool to convert from image to gcode
Acryl 6 0.5 5mm 6240 1400 Zweischneider, no external cooling - there are two types of Acryl: XT and GS. Use GS for Milling!

Warning

Do not use a too low feed-rate!! The cutting region of the milling head is microscopically round. If the "Spanbreite", the thickness of the removed material, is lower that this radius, most material is compressed and only cut if the compression force is to large. This results in dramatic friction and hence only heats up the milling head. The thought "Oh, the cutter is getting too hot, I can see burning marks in the side of the wood, I have to reduce the movement speed" is deadly!!! You can decrease the spindle speed, and increase the movement speed.

The Heat produced while cutting depends on the friction. A second part is proportional to the volume of material that is removed. Half the milling depth, half the heating! 25% sidewards instead of 50% sidewards cutting=half the heating.

Mill heads can break if the sidewards force is too large. So for tiny things, the feed rate together with the spindle speed and the cutting depth should be reduced.

Pocketing plexiglass

  • Choose engraving bit according to pocket size.
  • Be careful with CutIncrement (1mm is ok).
  • Be aware that plexiglass melts, so it's important to use cooling.
  • For bigger pocket operations, the vacuum cleaner has a certain cooling effect.
  • Air pressure and water cooling was necessary for the front door window engraving.


Cutting GFK (glasfaserverstärkter Kunststoff)

(Acquirable at http://www.der-schweighofer.at/artikel/77271/gfk_platte_300x135x1.5mm)

The following values work fine for cutting 1,5mm thick GFK.

  • Plunge Feed-rate: 100
  • Cut Feed-rate: 1500
  • Depth Increment: 0,8mm
  • Feed override: 75%

Aluminium

Maximum Millheadsize should be 4mm on our Machine! We sucessfully tested a_p = 0.25mm with 6mm head - with and without cooling (cooling done by isopropanol)

Spanabfuhr is quite a problem and our machine is not as stiff as we would like to have it for milling aluminium. so larger a_p would not work because the millhead will be bend to much.

Better use smaller diameter of cutter and higher spindle speed + feed rate.

Cutting Speed

or in German "Schnittgeschwindigkeit" is depended for a specific workpiece and cutter material.

Material Cutter Cooling Cutting Speed Feed Rate per Tooth Comment
Wood VHM No >400 >0.06 Tested with


Variable Description Beschreibung Unit
Feed per Teeth Vorschub pro Schneide
Cutting Speed Schnittgeschwindigkeit
Feed Rate Forward Vorschub
Number of Teeth Anzahl der Schneiden
Revolutions Umdrehungsgeschwindigkeit
Infeed Tiefenzustellung
Sidewards Feed Seitenzustellung
Cutter diameter Fräserdurchmesser

These values are connected to each other. There are two main formulars: and To have cutting speed in m/min instead of mm/min you need to divide by 1000. A third formular gives you an estimation how much cm³ you can remove per minute: .

How to

CamBam Mini HowTo

Werte die man bei CamBam beim erstellen eines 2.5D oder Pocket Operation beachten muss

Sehr wichtige Parameter

  • CutIncrement - Wie tief geht die fraese in einem schritt
  • TargetDepth - Wie tief soll er insgesammt gehen. Die operation wird dann in TargetDepth/cutIncrement unterschritte zerlegt. ACHTUNG dieser wert muss negativ sein damit die fraese rein fraest.
  • CutFeedrate Wie schnell wird horizontal gefraest (mm/sec)
  • PlungeFeedrate Wie schnell wird in das Material hineingetaucht (mm/sec)
  • ToolDiameter Durchmesser des Fraeskopfes damit CamBam die pfade so berechnen kann dass nach dem fraesen die gewuenschte form entsteht

Weitere Parameter

  • InsideOutside Falls man die Outline verkehrt herum geyeichnet hat kann man mit dieser option innen und aussen umdrehen (einfach mal ausprobieren)

Verwandte Seiten

Formeln zum Berechnen von Zustellung, Umdrehungsgeschwindigkeit usw.

Technical Details

See this other Page for even more technical things: CNC Mill Technical Stuff

A CNC mill like the dear Geil-O-Mat has three axis that can be moved independently. A spindle with a mill cutter typically removes material.

Some pink work in progress...

Each axis is driven by one (Y and Z) or two (X) stepper motors. Basically, theses motors can only rotate in 1.8 degree steps, and hence no secondary encoder is needed for the machine knowing its current location. By a trick called "microstepping", currently the resolution is increased to 1/8 of 1.8 degrees. As the stepper leads in to a "Zwillings-Trapezgewindespindel", the rotation is transformed into linear motion, one revolution= 6mm. Warning: If there is too much force for the motor to move one step, it skips the step, typically failing also in subsequent movements, resulting in an ugly noise, and shift in the positioning.

The motors are connected to a driver device, which sits on top of the whole machine. It creates the strong currents for the stepper drivers, out of signals from the PCs parallel port.

Hence, the computer has to send signals telling which axis should move one step forward or backward at a given instance. This can/is done by a software called "EMC". It is open source, and the thread doing this parallel port communications is using the patched real time Linux-kernel.

There are some GUIs for EMC, the most relevant is "AXIS", which graphically displays the current machine position, the paths it should travel the track history, and further stuff. Also manual movement can be performed.

The language to specify the movement of the machine is called "GCODE". Some of its statements are starting with G01,or G00, hence the name. A simple Gcode can look like this:

; i am a comment
F100; move with 100mm/min while cutting
G0 Z10; fast move to Z-coordinate 10
G1 Z0; drill down until Z=0 with the speed given by the Feedrate
G1 X10; move to the new location X10 while cutting
G0 Z10; and back up with large speed.
M30; end program

One can do a lot of things, e.g. have variables (#1=10), and do loops , evaluate mathematical expressions (G1 Z[#1*2] ). So basically, real hackers write gcode by hand, while Chuck Norris sends movement commands to the steppers. However, as we are all lacy, and things can get quite complicated, there exists software to convert 3d/2d CAD files, grayscale depthmap images, 3d-stl objects and other things into Gode. This is often called "CAM"-Software.

If you have a 2d-cad file (e.g. dxf) and specify depths for some areas that should be milled away, one speaks of 2.5D-CAM. This is performed e.g. by CamBam, or Camexpert.

The biggest trouble is the radius compensation of the milling heads. You always have to cut on a path half a diameter outside of the actual position. For this, there are various workflows. In Gcode, one can tell specify if one wants to cut left, right or directly on the actual path. This is called cutter radius compensations. Its a pain in the ass. Hence, often one uses no such thing, but either draws directly the offsetted lines in CAD, or has some software like cambam, which does this compensation and outputs already compensated "paths". The drawback of both methods is that one can not change the diameter of the cutter without recreating the gcode.

In the Gcode compensation, a "tool table" is used. Each cutter is index by a number, and in the table the diameters and other things are specified.

The current machine's state is given by a coordinate triple, and some states (emergency swich, spindle speed, ...). The machine coordinate system is defined by the now automated homing routine. Thereafter, one can move the machine to a location, and "touch off", giving explicit coordinates for this location. Thereby the working coordinate system is defined. This is also the system displayed in Axis, However, in the background, the machine still works in the home-coordinate system for checking its movement limits. Clever!

Nomenclature

Or the what is which device:

  • CNC PC: a Linux machine running the LinuxCNC Software and sends out commands via Parallel Port
  • G4: a old Apple G4 Case holding the stepper drivers
  • Stepper Driver: Each stepper driver controls one stepper. There are 5 Stepper Driver in the G4: 2x X, 1x Y, 1x Z, 1x A (currently unused)
  • Breakout Board: Is used to "convert" the parallel commands to a different protocol that the stepper drivers are using. Also has a VFD Port to control the Frequenconverter
  • FU/Frequenzumrichter/Frequencyconverter: This Box controls the Spindle. It has a output of 100 to 400Hz on 3 Phases and gets controlled by the Breakout Board.


Debugging Checklist

  • Damit die Limit Switches funktionieren, muss der Druckerport im BIOS auf ECC+EPP gestellt sein. Ansonsten sind die Relevanten Eingangs-Pins kommentarlos nicht einlesbar.
  • Wenn man Limits in EMC ausgelöst hat, hilft ein "override limits häckchen", ein einschalten (F1/F2), und ein wegfahren in die entsprechende richtung (Cursortasten und Page up/down)
  • Wenn man die Fräse einrichten muss, sind wichtige Hinweise hier gesammelt: Benutzer:Reox/CNC --Reox 18:10, 4. Jul. 2013 (CEST)

Hardware:

  • Stepper Driver: 4x Leadshine M542 Manual
  • Breakout Board: Benezan Mini Breakout6 Manual
  • Spindle: Mechatron HFS-6508-AC Manual
  • Frequency Inverter: Powtran PI8600 Manual
  • Stepper: Sanyo Denki 103h7126-0740 Tech Specs (Page 36)

CNC PC

On the CNC PC runs a Ubuntu version with a realtime kernel and 2.6 LinuxCNC. Because the dependecies for linuxcnc are really messed up, please do not try to update the PC! --Reox 14:36, 31. Aug. 2013 (CEST)

  • The PC has a Backup Harddisk, which contains a complete working system image for system restore.
  • The linuxcnc config folder (/home/cnc/linuxcnc/config) is a git repo, so please commit your changes if you changed something on the config.
  • Better: If you want to try new settings copy the Geilomat config and create your own - the Geilomat setup should be sufficant for everyone, so you need good reason to change it
  • The PC has APIC disabled, because of realtime kernel jitter reasons. so if you power it down, you need to press the power button after the system says "system halted"

Syntax Highlighting in Kate/Kwrite

in "~/.kde/share/apps/katepart/syntax" put Datei:Gcode.xml.txt without the txt extension.