Systemintegration beim CMS-Teilchendetektor des CERN: Unterschied zwischen den Versionen

aus Metalab Wiki, dem offenen Zentrum für meta-disziplinäre Magier und technisch-kreative Enthusiasten.
Zur Navigation springenZur Suche springen
Keine Bearbeitungszusammenfassung
K (+kat)
 
(2 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
'''Freitag, 11.04.2008, 20:00''' <br />
'''Freitag, 11.04.2008, 20:00''' im Metalab, [[Lage|1010 Wien, Rathausstr. 6]] <br />
Vortragender: '''[[Benutzer:Planck | Tobias Nöbauer]]''', Physiker und Soziologe
Vortragender: '''[[Benutzer:Planck | Tobias Nöbauer]]''', Physiker und Soziologe


[[Bild:LHC_Arc_Dipoles_Photo.jpg|right|thumb|250px|LHC: Dipolmagnete im Tunnel]]
[[Bild:LHC_Arc_Dipoles_Photo.jpg|right|thumb|250px|LHC: Dipolmagnete im Tunnel]]


Im Juli 2008 soll nun endlich die wahrscheinlich größte Maschine der Welt, der [http://www.encyclopediadramatica.com/Large_Hadron_Collider Large Hadron Collider (LHC)] am Europäischen Kernforschungszentrum [http://www.cern.ch CERN] bei Genf in Betrieb gehen. Ohne mit der Wimper zu zucken tauschen die Hochenergiephysiker dabei in einer globalen, wahnwitzig komplizierten Kollaboration etwa 4 Gigaeuro Geld und 200 Megawatt Strom gegen 14 Teraelektronvolt Kollisionsenergie von Protonen, was etwa der Energie einer handvoll motiviert fliegender Mücken entspricht.  
[[Bild:CMS Higgs Event.jpg|left|thumb|250px|Simulierter Zerfall eines Higgs-Bosons im CMS-Detektor]]Im Juli 2008 soll nun endlich die wahrscheinlich größte Maschine der Welt, der [http://www.encyclopediadramatica.com/Large_Hadron_Collider Large Hadron Collider (LHC)] am Europäischen Kernforschungszentrum [http://www.cern.ch CERN] bei Genf in Betrieb gehen. Ohne mit der Wimper zu zucken tauschen die Hochenergiephysiker dabei in einer globalen, wahnwitzig komplizierten Kollaboration etwa 4 Gigaeuro Geld und 200 Megawatt Strom gegen 14 Teraelektronvolt Kollisionsenergie von Protonen, was etwa der Energie einer handvoll motiviert fliegender Mücken entspricht.  


[[Bild:Gargamelle_Neutral_Current.jpg|right|thumb|250px|Neutral Current Reaktion in der Blasenkammer Gargamelle (CERN 1973)]]
[[Bild:Gargamelle_Neutral_Current.jpg|right|thumb|250px|Neutral Current Reaktion in der Blasenkammer Gargamelle (CERN 1973)]]
Zeile 10: Zeile 10:
Vier hallengroße Teilchendetektoren werden hoffentlich die Kollisionsprodukte messen: allein im Fall des [http://de.wikipedia.org/wiki/Compact_Muon_Solenoid CMS-Experiments] produzieren 200 m² Silizium Pixel- und Streifendetektoren und viele andere Sensoren etwa 320 Tbit/s an Messdaten, die dann erstmal gut weggeworfen werden wollen: ein eigens entwickelter und hochspezialisierter Parallelrechner aus etwa 4000 Motherboards, bestückt mit FPGAs und ASICs, schluckt für jede Kollision die Teras von Inputbits, sucht nach lustigen Mustern und berechnet tapfer und mit minimaler Latenz ein einziges Outputbit: 0 = Daten vergessen. 1 = weiter zur nächsten Stufe, einem Cluster aus 5000 Standardprozessoren, der diese Entscheidung nochmal etwas gründlicher überprüft, bevor dann etwa 100 Megabyte/s auf Harddisks geschrieben werden. Um aus diesen Pixeldaten dann vernünftige Schwarze Löcher herausrechnen zu können wurde das größte verteilte Computersystem der Welt gebaut, der LHC Computing Grid. Weltweit verteilt ist dieses System wohl in erster Linie aus sozialen Gründen: ein dickes Rechenzentrum gleich vor Ort wäre wohl zu langweilig gewesen.
Vier hallengroße Teilchendetektoren werden hoffentlich die Kollisionsprodukte messen: allein im Fall des [http://de.wikipedia.org/wiki/Compact_Muon_Solenoid CMS-Experiments] produzieren 200 m² Silizium Pixel- und Streifendetektoren und viele andere Sensoren etwa 320 Tbit/s an Messdaten, die dann erstmal gut weggeworfen werden wollen: ein eigens entwickelter und hochspezialisierter Parallelrechner aus etwa 4000 Motherboards, bestückt mit FPGAs und ASICs, schluckt für jede Kollision die Teras von Inputbits, sucht nach lustigen Mustern und berechnet tapfer und mit minimaler Latenz ein einziges Outputbit: 0 = Daten vergessen. 1 = weiter zur nächsten Stufe, einem Cluster aus 5000 Standardprozessoren, der diese Entscheidung nochmal etwas gründlicher überprüft, bevor dann etwa 100 Megabyte/s auf Harddisks geschrieben werden. Um aus diesen Pixeldaten dann vernünftige Schwarze Löcher herausrechnen zu können wurde das größte verteilte Computersystem der Welt gebaut, der LHC Computing Grid. Weltweit verteilt ist dieses System wohl in erster Linie aus sozialen Gründen: ein dickes Rechenzentrum gleich vor Ort wäre wohl zu langweilig gewesen.


[[Bild:Global_Muon_Trigger.jpg|thumb|250px|Global Muon Trigger, das Diplomarbeitsthema des Vortragenden]] An der Übersichtlichkeit und Bescheidenheit des LHC-Projekts will sich der Vortrag orientieren: physikalische Hintergründe und Designüberlegungen zum LHC und den Detektoren sollen ebenso zu Sprache und Bildern kommen wie einige Grundkonzepte der Quantenfeldtheorie, die Funktionsweise von Teilchendetektoren, FPGA-Firmware-Programmierung, verteilte Steuersysteme aus Web-Services und Zukunftsperspektiven der Hochenergiephysik. Wir besprechen Blasenkammerfotos und Feynman-Diagramme, Supraleiter und Halbleiter, die Erfindung des WWW und die Entdeckung der neutralen Ströme, Quarks, Gruppendynamik, Berufsaussichten und den Weltuntergang. Kurz: Die Systemintegration des Globalen Müonentriggers für das CMS Experiment am CERN.
[[Bild:Global_Muon_Trigger.jpg|thumb|250px|Global Muon Trigger, das Diplomarbeitsthema des Vortragenden]]An der Übersichtlichkeit und Bescheidenheit des LHC-Projekts will sich der Vortrag orientieren: physikalische Hintergründe und Designüberlegungen zum LHC und den Detektoren sollen ebenso zu Sprache und Bildern kommen wie einige Grundkonzepte der Quantenfeldtheorie, die Funktionsweise von Teilchendetektoren, FPGA-Firmware-Programmierung, verteilte Steuersysteme aus Web-Services und Zukunftsperspektiven der Hochenergiephysik. Wir besprechen Blasenkammerfotos und Feynman-Diagramme, Supraleiter und Halbleiter, die Erfindung des WWW und die Entdeckung der neutralen Ströme, Quarks, Gruppendynamik, Berufsaussichten und den Weltuntergang. Kurz: Die Systemintegration des Globalen Müonentriggers für das CMS Experiment am CERN.


[[Bild:CMS YE Lowering.jpg|left|thumb|250px|Absenken eines Teils des CMS-Detektors in die unterirdische Experimentalhalle]]
[[Bild:CMS YE Lowering.jpg|left|thumb|250px|Absenken eines Teils des CMS-Detektors in die unterirdische Experimentalhalle]]
[[Bild:CMS Higgs Event.jpg|left|thumb|250px|Simulierter Zerfall eines Higgs-Bosons im CMS-Detektor]]
 
[[Kategorie:Veranstaltungen]]

Aktuelle Version vom 12. April 2008, 09:14 Uhr

Freitag, 11.04.2008, 20:00 im Metalab, 1010 Wien, Rathausstr. 6
Vortragender: Tobias Nöbauer, Physiker und Soziologe

LHC: Dipolmagnete im Tunnel
Simulierter Zerfall eines Higgs-Bosons im CMS-Detektor

Im Juli 2008 soll nun endlich die wahrscheinlich größte Maschine der Welt, der Large Hadron Collider (LHC) am Europäischen Kernforschungszentrum CERN bei Genf in Betrieb gehen. Ohne mit der Wimper zu zucken tauschen die Hochenergiephysiker dabei in einer globalen, wahnwitzig komplizierten Kollaboration etwa 4 Gigaeuro Geld und 200 Megawatt Strom gegen 14 Teraelektronvolt Kollisionsenergie von Protonen, was etwa der Energie einer handvoll motiviert fliegender Mücken entspricht.

Neutral Current Reaktion in der Blasenkammer Gargamelle (CERN 1973)

Vier hallengroße Teilchendetektoren werden hoffentlich die Kollisionsprodukte messen: allein im Fall des CMS-Experiments produzieren 200 m² Silizium Pixel- und Streifendetektoren und viele andere Sensoren etwa 320 Tbit/s an Messdaten, die dann erstmal gut weggeworfen werden wollen: ein eigens entwickelter und hochspezialisierter Parallelrechner aus etwa 4000 Motherboards, bestückt mit FPGAs und ASICs, schluckt für jede Kollision die Teras von Inputbits, sucht nach lustigen Mustern und berechnet tapfer und mit minimaler Latenz ein einziges Outputbit: 0 = Daten vergessen. 1 = weiter zur nächsten Stufe, einem Cluster aus 5000 Standardprozessoren, der diese Entscheidung nochmal etwas gründlicher überprüft, bevor dann etwa 100 Megabyte/s auf Harddisks geschrieben werden. Um aus diesen Pixeldaten dann vernünftige Schwarze Löcher herausrechnen zu können wurde das größte verteilte Computersystem der Welt gebaut, der LHC Computing Grid. Weltweit verteilt ist dieses System wohl in erster Linie aus sozialen Gründen: ein dickes Rechenzentrum gleich vor Ort wäre wohl zu langweilig gewesen.

Global Muon Trigger, das Diplomarbeitsthema des Vortragenden

An der Übersichtlichkeit und Bescheidenheit des LHC-Projekts will sich der Vortrag orientieren: physikalische Hintergründe und Designüberlegungen zum LHC und den Detektoren sollen ebenso zu Sprache und Bildern kommen wie einige Grundkonzepte der Quantenfeldtheorie, die Funktionsweise von Teilchendetektoren, FPGA-Firmware-Programmierung, verteilte Steuersysteme aus Web-Services und Zukunftsperspektiven der Hochenergiephysik. Wir besprechen Blasenkammerfotos und Feynman-Diagramme, Supraleiter und Halbleiter, die Erfindung des WWW und die Entdeckung der neutralen Ströme, Quarks, Gruppendynamik, Berufsaussichten und den Weltuntergang. Kurz: Die Systemintegration des Globalen Müonentriggers für das CMS Experiment am CERN.

Absenken eines Teils des CMS-Detektors in die unterirdische Experimentalhalle