
3D computer graphics
with OpenGL

Karin Kosina (vka kyrah)

OpenGL

Open Graphics Library

OpenGL

• a platform-independent API for 2D and 3D graphics applications

• a standard, not a library

• various implementions (e.g. by graphics card vendors) with
varying degrees of optimisation

• input: primitives (polygons, lines, points)

• output: pixels

• low-level

• state-machine

• only does rendering

• need additional framework for OS integration, image loading,...

the rendering pipeline

concepts

• Rendering pipeline?

• Think of oil pipelines, assembly lines, ski lifts,...

• Pipelines consist of stages.

• In an oil pipeline, the oil passes through sequencially.

• The speed of the pipeline is determined by the slowest part
of the pipeline, no matter how fast the other stages may be.

• Ideally, a pipeline of n stages should give a speed-up of factor n

• assembly line is a good example

concepts

• Pipeline stages are executed in parallel, but they are stalled
until the slowest stage has finished its task.

• cf. a car factory assembly line:

• attaching the steering wheel takes 3 minutes

• each other step takes 2 minutes

• ➙ you can finish one car
 every 3 minutes

• Slowest stage = “bottleneck”

graphics rendering pipeline

• Function:

• generate (“render”) a 2-dimensional image given 3-
dimensional objects (and a virtual camera, light sources,
a lighting model, etc.)

• Rendering speed

• update speed of images

• expressed in frames per second (fps)

• rendering speed is determined by the bottleneck

overview

Application Geometry Rasterizer

overview

Application Geometry Rasterizer

• Fully controlled by application programmer

• collision detection,

• input handling (keyboard, mouse, any other devices)

• animations (updating model transformations)

• acceleration algorithms (such as hierarchical view frustum
culling)

• Output:

• Geometry to be rendered in the form of rendering
primitives (points, lines, triangles)

the application stage

overview

Application Geometry Rasterizer

the geometry stage

• Computes what should be drawn, where it should be drawn,
how it should be drawn.

• Handles per-vertex operations.

• Can be subdivided into five functional stages:

• model & view transform, lighting, projection,
clipping, screen mapping.

• With a single light source, each vertex requires approximately
100 individual floating point operations!

Model & View
Transform

Lighting Projection Clipping Screen
Mapping

overview

Application Geometry Rasterizer

the rasterization stage

• Input: transformed and projected vertices, colors, and
texture coordinates from the geometry stage.

• Task is to assign correct colors to the pixels on the screen
to render a correct image.

• Rasterization (aka scan conversion):

• Conversion of 2d vertices in screen space (each with a z-
value, one or two colors, and possibly a set of texture
coordinates) into pixels on the screen.

the rasterization stage

• Handles per-pixel operations.

• Information for each pixel is stored in the color buffer (a
rectangular array of colors).

• Color buffer should contain only the colors of the
primitives which are visible from the point of view of the
camera.

• This is usually done using the Z-Buffer algorithm.

summary

Application Geometry Rasterizer

STL?

STL?

SDL

Simple Directmedia Layer

SDL

• SDL is a free cross-platform multi-media development API

• abstraction for OS-dependent tasks

• create window and rendering context

• handle keyboard, mouse, and joystick events

• audio

• thread abstraction

• ...

• see http://libsdl.org

anatomy of an SDL application

1. Initialise SDL (SDL_Init())

2. Create OpenGL rendering context (SDL_SetVideoMode())

3. Do your own OpenGL and app initialisation

4. Run main loop:

• rendering

• event processing

5. Cleanup

brace yourselves

anatomy of an SDL application

int main(int argc, char ** argv)
{
 int width = 640, height = 480;

 // Initialize SDL
 if (SDL_Init(SDL_INIT_VIDEO) < 0) {
 fprintf(stderr, "Unable to init SDL: %s\n", SDL_GetError());
 return -1;
 }

 if (!SDL_SetVideoMode(width, height, 32, SDL_OPENGL)) {
 fprintf(stderr, "Unable set video mode: %s\n", SDL_GetError());
 SDL_Quit();
 return -1;
 }

 SDL_WM_SetCaption("SDL/OpenGL intro", NULL); // window title
 myinit(width, height); // initialize OpenGL

 // ... continued on next page

anatomy of an SDL application

 // main application loop
 bool done = false;
 while (!done) {
 mydisplay();
 SDL_Event event;
 while (SDL_PollEvent(&event)) {
 if (event.type == SDL_QUIT) done = true;
 if (event.type == SDL_KEYDOWN) {
 switch(event.key.keysym.sym) {
 case SDLK_ESCAPE:
 done = true;
 }
 }
 }
 }

 SDL_Quit();
 return 0;
}

basicsdl.cpp

</SDL>

now for some OpenGL fun!

triangle.cpp

OpenGL initialisation

void myinit(int width, int height)
{
 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
 glEnable(GL_DEPTH_TEST);
 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (float)width/(float)height, 0.1, 100.0);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(0.0, 0.0, 4.0, // eye
 0.0, 0.0, -1.0, // center
 0.0, 1.0, 0.0); // up
}

drawing

void mydisplay()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();

 glBegin(GL_TRIANGLES);
 glVertex3f(0.0f, 1.0f, 0.0f);
 glVertex3f(1.0f,-1.0f, 0.0f);
 glVertex3f(-1.0f,-1.0f, 0.0f);
 glEnd();

 SDL_GL_SwapBuffers();
}

OpenGL initialisation

void myinit(int width, int height)
{
 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
 glEnable(GL_DEPTH_TEST);
 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (float)width/(float)height, 0.1, 100.0);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(0.0, 0.0, 4.0, // eye
 0.0, 0.0, -1.0, // center
 0.0, 1.0, 0.0); // up
}

OpenGL initialisation

void myinit(int width, int height)
{
 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
 glEnable(GL_DEPTH_TEST);
 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (float)width/(float)height, 0.1, 100.0);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(0.0, 0.0, 4.0, // eye
 0.0, 0.0, -1.0, // center
 0.0, 1.0, 0.0); // up
}

OpenGL initialisation

void myinit(int width, int height)
{
 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
 glEnable(GL_DEPTH_TEST);
 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (float)width/(float)height, 0.1, 100.0);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(0.0, 0.0, 4.0, // eye
 0.0, 0.0, -1.0, // center
 0.0, 1.0, 0.0); // up
}

the z-buffer

• The Z-buffer is the same size as the color buffer and stores the
z-value from the camera to the closest primitive.

• When a primitive is rendered to a certain pixel, the z-value of
the primitive at that pixel is computed and compared to the
contents of the Z-buffer at the same pixel.

• If the new z value is smaller than the z value in the Z-buffer,
the primitive is closer to the camera ➙ the z value and the
color of that pixel are updated.

• If the new z value is greater, color and z are not changed.

OpenGL initialisation

void myinit(int width, int height)
{
 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
 glEnable(GL_DEPTH_TEST);
 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (float)width/(float)height, 0.1, 100.0);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(0.0, 0.0, 4.0, // eye
 0.0, 0.0, -1.0, // center
 0.0, 1.0, 0.0); // up
}

OpenGL initialisation

void myinit(int width, int height)
{
 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
 glEnable(GL_DEPTH_TEST);
 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (float)width/(float)height, 0.1, 100.0);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(0.0, 0.0, 4.0, // eye
 0.0, 0.0, -1.0, // center
 0.0, 1.0, 0.0); // up
}

OpenGL initialisation

void myinit(int width, int height)
{
 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
 glEnable(GL_DEPTH_TEST);
 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (float)width/(float)height, 0.1, 100.0);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(0.0, 0.0, 4.0, // eye
 0.0, 0.0, -1.0, // center
 0.0, 1.0, 0.0); // up
}

OpenGL initialisation

void myinit(int width, int height)
{
 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
 glEnable(GL_DEPTH_TEST);
 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (float)width/(float)height, 0.1, 100.0);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(0.0, 0.0, 4.0, // eye
 0.0, 0.0, -1.0, // center
 0.0, 1.0, 0.0); // up
}

projection

• Two projection methods:

• orthographic vs. perpective projection

• Orthographic projection:

• View volume is a rectangular box.

• Parallel lines remain parallel after the transform.

Model & View
Transform

Lighting Projection Clipping Screen
Mapping

projection

Model & View
Transform

Lighting Projection Clipping Screen
Mapping

calculate the desired field of view.)

The preceding paragraph mentions inches and millimeters - do these really have anything to do with

OpenGL? The answer is, in a word, no. The projection and other transformations are inherently unitless.

If you want to think of the near and far clipping planes as located at 1.0 and 20.0 meters, inches,

kilometers, or leagues, it's up to you. The only rule is that you have to use a consistent unit of

measurement. Then the resulting image is drawn to scale.

Orthographic Projection

With an orthographic projection, the viewing volume is a rectangular parallelepiped, or more informally,

a box (see Figure 3-15). Unlike perspective projection, the size of the viewing volume doesn't change

from one end to the other, so distance from the camera doesn't affect how large an object appears. This

type of projection is used for applications such as creating architectural blueprints and computer-aided

design, where it's crucial to maintain the actual sizes of objects and angles between them as they're

projected.

Figure 3-15 : Orthographic Viewing Volume

The command glOrtho() creates an orthographic parallel viewing volume. As with glFrustum(), you

specify the corners of the near clipping plane and the distance to the far clipping plane.

void glOrtho(GLdouble left, GLdouble right, GLdouble bottom,

GLdouble top, GLdouble near, GLdouble far);

Creates a matrix for an orthographic parallel viewing volume and multiplies the current matrix by

it. (left, bottom, -near) and (right, top, -near) are points on the near clipping plane that are

mapped to the lower-left and upper-right corners of the viewport window, respectively. (left,

bottom, -far) and (right, top, -far) are points on the far clipping plane that are mapped to the same

respective corners of the viewport. Both near and far can be positive or negative.

With no other transformations, the direction of projection is parallel to the z-axis, and the viewpoint faces

OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (27 of 49) [4/28/2000 9:45:03 PM]

glOrtho(float left, float right,
 float bottom, float top,
 float near, float far);

projection

Model & View
Transform

Lighting Projection Clipping Screen
Mapping

proj_ortho.cpp

projection

• Perspective projection:

• The farther away an object lies from the camera, the smaller
it appears after projection.

• Parallel lines converge at the horizon.

• View volume (called frustum) is a truncated pyramid with a
rectangular base.

Model & View
Transform

Lighting Projection Clipping Screen
Mapping

projection

Model & View
Transform

Lighting Projection Clipping Screen
Mapping

glFrustum(float left, float right,
 float bottom, float top,
 float near, float far);

Figure 3-13 : Perspective Viewing Volume Specified by glFrustum()

void glFrustum(GLdouble left, GLdouble right, GLdouble bottom,

GLdouble top, GLdouble near, GLdouble far);

Creates a matrix for a perspective-view frustum and multiplies the current matrix by it. The

frustum's viewing volume is defined by the parameters: (left, bottom, -near) and (right, top, -near)

specify the (x, y, z) coordinates of the lower-left and upper-right corners of the near clipping

plane; near and far give the distances from the viewpoint to the near and far clipping planes. They

should always be positive.

The frustum has a default orientation in three-dimensional space. You can perform rotations or

translations on the projection matrix to alter this orientation, but this is tricky and nearly always

avoidable.

Advanced

Also, the frustum doesn't have to be symmetrical, and its axis isn't necessarily aligned with the z-axis.

For example, you can use glFrustum() to draw a picture as if you were looking through a rectangular

window of a house, where the window was above and to the right of you. Photographers use such a

viewing volume to create false perspectives. You might use it to have the hardware calculate images at

much higher than normal resolutions, perhaps for use on a printer. For example, if you want an image

that has twice the resolution of your screen, draw the same picture four times, each time using the

frustum to cover the entire screen with one-quarter of the image. After each quarter of the image is

rendered, you can read the pixels back to collect the data for the higher-resolution image. (See Chapter 8

for more information about reading pixel data.)

Although it's easy to understand conceptually, glFrustum() isn't intuitive to use. Instead, you might try

the Utility Library routine gluPerspective(). This routine creates a viewing volume of the same shape as

glFrustum() does, but you specify it in a different way. Rather than specifying corners of the near

clipping plane, you specify the angle of the field of view (&THgr; , or theta, in Figure 3-14) in the y

OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (25 of 49) [4/28/2000 9:45:03 PM]

projection

Model & View
Transform

Lighting Projection Clipping Screen
Mapping

direction and the aspect ratio of the width to height (x/y). (For a square portion of the screen, the aspect

ratio is 1.0.) These two parameters are enough to determine an untruncated pyramid along the line of

sight, as shown in Figure 3-14. You also specify the distance between the viewpoint and the near and far

clipping planes, thereby truncating the pyramid. Note that gluPerspective() is limited to creating

frustums that are symmetric in both the x- and y-axes along the line of sight, but this is usually what you

want.

Figure 3-14 : Perspective Viewing Volume Specified by gluPerspective()

void gluPerspective(GLdouble fovy, GLdouble aspect,

GLdouble near, GLdouble far);

Creates a matrix for a symmetric perspective-view frustum and multiplies the current matrix by it.

fovy is the angle of the field of view in the x-z plane; its value must be in the range [0.0,180.0].

aspect is the aspect ratio of the frustum, its width divided by its height. near and far values the

distances between the viewpoint and the clipping planes, along the negative z-axis. They should

always be positive.

Just as with glFrustum(), you can apply rotations or translations to change the default orientation of the

viewing volume created by gluPerspective(). With no such transformations, the viewpoint remains at the

origin, and the line of sight points down the negative z-axis.

With gluPerspective(), you need to pick appropriate values for the field of view, or the image may look

distorted. For example, suppose you're drawing to the entire screen, which happens to be 11 inches high.

If you choose a field of view of 90 degrees, your eye has to be about 7.8 inches from the screen for the

image to appear undistorted. (This is the distance that makes the screen subtend 90 degrees.) If your eye

is farther from the screen, as it usually is, the perspective doesn't look right. If your drawing area

occupies less than the full screen, your eye has to be even closer. To get a perfect field of view, figure out

how far your eye normally is from the screen and how big the window is, and calculate the angle the

window subtends at that size and distance. It's probably smaller than you would guess. Another way to

think about it is that a 94-degree field of view with a 35-millimeter camera requires a 20-millimeter lens,

which is a very wide-angle lens. (See "Troubleshooting Transformations" for more details on how to

OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (26 of 49) [4/28/2000 9:45:03 PM]

gluPerspective(float fovy, float aspect,
 float near, float far);

projection

Model & View
Transform

Lighting Projection Clipping Screen
Mapping

proj_persp.cpp

OpenGL initialisation

void myinit(int width, int height)
{
 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
 glEnable(GL_DEPTH_TEST);
 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (float)width/(float)height, 0.1, 100.0);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(0.0, 0.0, 4.0, // eye
 0.0, 0.0, -1.0, // center
 0.0, 1.0, 0.0); // up
}

OpenGL initialisation

void myinit(int width, int height)
{
 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
 glEnable(GL_DEPTH_TEST);
 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(-3, 3, -3, 3, 2, 10);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(0.0, 0.0, 4.0, // eye
 0.0, 0.0, -1.0, // center
 0.0, 1.0, 0.0); // up
}

OpenGL initialisation

void myinit(int width, int height)
{
 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
 glEnable(GL_DEPTH_TEST);
 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (float)width/(float)height, 0.1, 100.0);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(0.0, 0.0, 4.0, // eye
 0.0, 0.0, -1.0, // center
 0.0, 1.0, 0.0); // up
}

OpenGL initialisation

void myinit(int width, int height)
{
 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
 glEnable(GL_DEPTH_TEST);
 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (float)width/(float)height, 0.1, 100.0);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(0.0, 0.0, 4.0, // eye
 0.0, 0.0, -1.0, // center
 0.0, 1.0, 0.0); // up
}

drawing

void mydisplay()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();

 glBegin(GL_TRIANGLES);
 glVertex3f(0.0f, 1.0f, 0.0f);
 glVertex3f(1.0f,-1.0f, 0.0f);
 glVertex3f(-1.0f,-1.0f, 0.0f);
 glEnd();

 SDL_GL_SwapBuffers();
}

drawing

void mydisplay()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();

 glBegin(GL_TRIANGLES);
 glVertex3f(0.0f, 1.0f, 0.0f);
 glVertex3f(1.0f,-1.0f, 0.0f);
 glVertex3f(-1.0f,-1.0f, 0.0f);
 glEnd();

 SDL_GL_SwapBuffers();
}

drawing

void mydisplay()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();

 glBegin(GL_TRIANGLES);
 glVertex3f(0.0f, 1.0f, 0.0f);
 glVertex3f(1.0f,-1.0f, 0.0f);
 glVertex3f(-1.0f,-1.0f, 0.0f);
 glEnd();

 SDL_GL_SwapBuffers();
}

drawing

void mydisplay()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();

 glBegin(GL_TRIANGLES);
 glVertex3f(0.0f, 1.0f, 0.0f);
 glVertex3f(1.0f,-1.0f, 0.0f);
 glVertex3f(-1.0f,-1.0f, 0.0f);
 glEnd();

 SDL_GL_SwapBuffers();
}

drawing

void mydisplay()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();

 glBegin(GL_TRIANGLES);
 glVertex3f(0.0f, 1.0f, 0.0f);
 glVertex3f(1.0f,-1.0f, 0.0f);
 glVertex3f(-1.0f,-1.0f, 0.0f);
 glEnd();

 SDL_GL_SwapBuffers();
}

drawing

void mydisplay()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();

 glBegin(GL_TRIANGLES);
 glVertex3f(0.0f, 1.0f, 0.0f);
 glVertex3f(1.0f,-1.0f, 0.0f);
 glVertex3f(-1.0f,-1.0f, 0.0f);
 glEnd();

 SDL_GL_SwapBuffers();
}

drawing

void mydisplay()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();

 glBegin(GL_TRIANGLES);
 glVertex3f(0.0f, 1.0f, 0.0f);
 glVertex3f(1.0f,-1.0f, 0.0f);
 glVertex3f(-1.0f,-1.0f, 0.0f);
 glEnd();

 SDL_GL_SwapBuffers();
}

drawing

void mydisplay()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();

 glBegin(GL_TRIANGLES);
 glVertex3f(0.0f, 1.0f, 0.0f);
 glVertex3f(1.0f,-1.0f, 0.0f);
 glVertex3f(-1.0f,-1.0f, 0.0f);
 glEnd();

 SDL_GL_SwapBuffers();
}

double-buffering

• To avoid visible flickering during the rasterization process,
double buffering is used:

• Rendering is done off-screen in the back buffer.

• When the rendered scene is complete, front and back
buffer are swapped.

• The swapping is done during the vertical monitor sync,
so that it is not visible.

let’s move the triangle

modify drawing code

void mydisplay()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();

 glBegin(GL_TRIANGLES);
 glVertex3f(0.0f, 1.0f, 0.0f);
 glVertex3f(1.0f,-1.0f, 0.0f);
 glVertex3f(-1.0f,-1.0f, 0.0f);
 glEnd();

 SDL_GL_SwapBuffers();
}

modified drawing code

void mydisplay()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();

 glBegin(GL_TRIANGLES);
 glVertex3f(1.0f, 1.0f, 0.0f);
 glVertex3f(2.0f,-1.0f, 0.0f);
 glVertex3f(0.0f,-1.0f, 0.0f);
 glEnd();

 SDL_GL_SwapBuffers();
}

transtri1.cpp

this works

but can get kinda tedious

there’s a better way

original drawing code

void mydisplay()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();

 glBegin(GL_TRIANGLES);
 glVertex3f(0.0f, 1.0f, 0.0f);
 glVertex3f(1.0f,-1.0f, 0.0f);
 glVertex3f(-1.0f,-1.0f, 0.0f);
 glEnd();

 SDL_GL_SwapBuffers();
}

add a translation

void mydisplay()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();

 glTranslatef(1.0f, 0.0f, 0.0f);

 glBegin(GL_TRIANGLES);
 glVertex3f(0.0f, 1.0f, 0.0f);
 glVertex3f(1.0f,-1.0f, 0.0f);
 glVertex3f(-1.0f,-1.0f, 0.0f);
 glEnd();

 SDL_GL_SwapBuffers();
}

transtri2.cpp

and one more possibility

move the camera

void myinit(int width, int height)
{
 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
 glEnable(GL_DEPTH_TEST);
 glViewport(0, 0, width, height);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (float)width/(float)height, 0.1, 100.0);
 gluLookAt(0.0, 0.0, 4.0, // eye
 0.0, 0.0, -1.0, // center
 0.0, 1.0, 0.0); // up
 glMatrixMode(GL_MODELVIEW);
}

move the camera

void myinit(int width, int height)
{
 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
 glEnable(GL_DEPTH_TEST);
 glViewport(0, 0, width, height);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (float)width/(float)height, 0.1, 100.0);
 gluLookAt(-1.0, 0.0, 4.0, // eye
 -1.0, 0.0, -1.0, // center
 0.0, 1.0, 0.0); // up
 glMatrixMode(GL_MODELVIEW);
}

transtri3.cpp

a few words on
coordinate systems

coordinate systems

• On the way to the screen, a model is transformed into several
different spaces or coordinate systems:

• model space

• world space [result of model transform]

• camera space [result of view transform]

• Model transform and view transform are often concatenated
for efficiency reasons.

Model & View
Transform

Lighting Projection Clipping Screen
Mapping

coordinate systems

• Model space (aka object space)

• Being in model space means that a model has not been
transformed at all.

• A model can be associated with a model transform to
position and orient it.

• Several model transforms associated with one model allow
for multiple instances without geometry replication.

Model & View
Transform

Lighting Projection Clipping Screen
Mapping

coordinate systems

• World space

• After the model transform has been applied to the model, it
is located in world space.

• Model transform changes vertices and normals of the
model.

• World space is unique: After the models have been
transformed by their respective model transforms, all
models exist in this same space.

Model & View
Transform

Lighting Projection Clipping Screen
Mapping

right-hand coordinate system

coordinate systems

• Camera space

• Virtual camera has a location in world space and a
direction.

• The view transform places the camera at the origin and aims
it to look in the direction of the negative z-axis, with the y-
axis pointing upwards and the x-axis pointing right.

• All models are transformed with the view transform to
facilitate projection and clipping.

Model & View
Transform

Lighting Projection Clipping Screen
Mapping

let’s colour the triangle

drawing

void mydisplay()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();

 glBegin(GL_TRIANGLES);
 glColor3f(1.0f, 0.0f, 0.0f);
 glVertex3f(0.0f, 1.0f, 0.0f);
 glVertex3f(1.0f,-1.0f, 0.0f);
 glVertex3f(-1.0f,-1.0f, 0.0f);
 glEnd();

 SDL_GL_SwapBuffers();
}

drawing

void mydisplay()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();

 glBegin(GL_TRIANGLES);

 glColor3f(1.0f, 0.0f, 0.0f);
 glVertex3f(0.0f, 1.0f, 0.0f);
 glColor3f(0.0f, 0.0f, 1.0f);
 glVertex3f(1.0f,-1.0f, 0.0f);
 glColor3f(0.0f, 1.0f, 0.0f);
 glVertex3f(-1.0f,-1.0f, 0.0f);

 glEnd();

 SDL_GL_SwapBuffers();
}

tricolor.cpp

tricolor.cpp

so let’s do some 3D drawing

start with framework
from last example

drawing the first quad

void mydisplay()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();

 glBegin(GL_TRIANGLES);
 glVertex3f(0.0f, 1.0f, 0.0f);
 glVertex3f(1.0f,-1.0f, 0.0f);
 glVertex3f(-1.0f,-1.0f, 0.0f);
 glEnd();

 SDL_GL_SwapBuffers();
}

drawing the first quad

void mydisplay()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();

 SDL_GL_SwapBuffers();
}

drawing the first quad

void mydisplay()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();

 glBegin(GL_QUADS);
 // front
 glColor3f(0, 1, 0);
 glVertex3f(-1, 0, 1);
 glVertex3f(-1, 2, 1);
 glVertex3f(1, 2, 1);
 glVertex3f(1, 0, 1);
 glEnd();

 SDL_GL_SwapBuffers();
}

compile and run

drawing the first quad

void myinit(int width, int height)
{
 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
 glViewport(0, 0, width, height);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (float)width/(float)height, 0.1, 100.0);
 gluLookAt(0.0, 2.0, 8.0, // eye
 0.0, 2.0, -1.0, // center
 0.0, 1.0, 0.0); // up
 glMatrixMode(GL_MODELVIEW);
}

drawing the remaining quads
is trivial and left as an exercise to the

student

drawing the other quads

 // back
 glVertex3f(-1, 0, -1);
 glVertex3f(1, 0, -1);
 glVertex3f(1, 2, -1);
 glVertex3f(-1, 2, -1);

 // left
 glVertex3f(-1, 0, 1);
 glVertex3f(-1, 2, 1);
 glVertex3f(-1, 2, -1);
 glVertex3f(-1, 0, -1);

 // right
 glVertex3f(1, 0, 1);
 glVertex3f(1, 0, -1);
 glVertex3f(1, 2, -1);
 glVertex3f(1, 2, 1);

not much different, I’m afraid

just a question of perspective

rotating the scene

void mydisplay()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();

 glRotatef(rotation, 0, 1, 0);

 glBegin(GL_QUADS);
 // front
 glColor3f(0, 1, 0);
 glVertex3f(-1, 0, 1);
 glVertex3f(-1, 2, 1);
 glVertex3f(1, 2, 1);
 glVertex3f(1, 0, 1);
 glEnd();

 SDL_GL_SwapBuffers();
}

rotating the scene

 // in main()

 while (!done) {
 mydisplay();
 SDL_Event event;
 while (SDL_PollEvent(&event)) {
 if (event.type == SDL_QUIT) done = true;
 if (event.type == SDL_KEYDOWN) {
 switch(event.key.keysym.sym) {
 case SDLK_ESCAPE:
 done = true;
 break;
 case SDLK_r:
 rotation = (rotation + 5) % 360;
 break;
 }
 }
 }
 }

now for the pyramid...

drawing the pyramid

 glBegin(GL_TRIANGLES);

 // front
 glColor3f(1, 1, 0);
 glVertex3f(-1, 2, 1);
 glVertex3f(0, 4, 0);
 glVertex3f(1, 2, 1);

 // right
 glVertex3f(1, 2, 1);
 glVertex3f(1, 2, -1);
 glVertex3f(0, 4, 0);

 // back
 glVertex3f(1, 2, -1);
 glVertex3f(-1, 2, -1);
 glVertex3f(0, 4, 0);

 // left
 glVertex3f(-1, 2, 1);
 glVertex3f(0, 4, 0);
 glVertex3f(-1, 2, -1);

 glEnd();

3ddrawing.cpp

a few words on
3D transformations

transformations overview

• OpenGL uses 4x4 matrices for modeling transformations.

• Why not 3x3?

• You don’t want to know...

• Convenience functions for many operations:

• glRotate*(), glTranslate*(), glScale*()

• Effects of transformations can be localized

• glPushMatrix(), glPopMatrix()

(But I will tell you anyway.)

manipulating the matrix stack

• glPushMatrix()

• push all matrices in the current stack (determined by
glMatrixMode()) down one level (the topmost matrix is
duplicated)

• glPopMatrix()

• pop the top matrix off the stack. The second matrix from
the top of the stack becomes top, the contents of the
popped matrix are destroyed.

OpenGL modelview matrix

• 4x4 matrix

• OpenGL uses column vectors instead of row vectors

• Matrices in OpenGL are defined like this:

 m0 m4 m8 m12

 m1 m5 m9 m13

M = m2 m6 m10 m14

 m3 m7 m11 m15

model transformations in OpenGL

• 3 modeling transformations

• glTranslate*()

• glRotate*()

• glScale*()

• Multiply a proper matrix for transform/rotate/scale to the
current matrix and load the resulting matrix as current
matrix.

maths alert

glScalef(a,b,c)

• Thus the scaling matrix is

 a 0 0
 S = 0 b 0
 0 0 c

• x1 = ax0; y1 = by0; z1 = cz0

• How can we write this in matrix form?

x1 a 0 0 x0 ax0

y1 0 b 0 y0 by0

z1 0 0 c z0 cz0
= =.

• Similarly for rotation we have:

• glRotatef(a, 1, 0, 0):

• glRotatef(a, 0, 1, 0):

• glRotatef(a, 0, 0, 1):

1 0 0
0 cosa -sina
0 sina cosa

cosa -sina 0
sina cosa 0
 0 0 1

cosa 0 sina
 0 1 0
-sina 0 cosa

glRotatef(a, x, y, z)

• How is a translation defined?

• x1 = x0 + x
y1 = y0 + y
z1 = z0 + z

• glTranslatef(x,y,z)

!! This is a problem !!

There is no way to represent this
as a multiplication of 3x3 matrices

• Where there’s a will, there’s a workaround.

• Use 4x4 matrices!

 1 0 0 x
 0 1 0 y
T = 0 0 1 z
 0 0 0 1

x1 1 0 0 x x0 x0+x
y1 0 1 0 y y0 y0+y
z1 0 0 1 z z0 z0+z
1 0 0 0 1 1 1

= =.

• glTranslatef(x,y,z)

• This actually gives us the correct results:

you can open your eyes again

order of transformations

• Matrix multiplication
is not commutative.

• The order of
operations is
important!

• Example:
Rotation and
translation

rotate first, than translate

translate first, than rotate

