
Functional
Programming

W(hat)TF?

Lambda
Calculus

f(x,y)=x^y
λx. λy. x^y

mathematical
functions

Math:
b = {n | n ∈ a ∧ n ≤ 10}

 Haskell:

b = [n | n <- a, n <= 10]

f(x) = x^2
 Haskell: f x = x^2

Clojure: (defn f [x] (* x x))

variables !
= variable

 2x = 6 => x = 3 2

functions
don't travel
business

class

first class citizens

partial
application

multiply = -> x,y {x*y}

bytwo = multiply.curry[2]
bytwo[2] # => 4

compose
(like you are Mozart)F

f(g(x)) = (f∘g)(x)

Haskell: f . g = \x -> f (g x)

smart people
are lazy

smart languages too

Haskell:

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
take 10 fibs

#=> [0,1,1,2,3,5,8,13,21,34]

numbers = 1 : map (+1) numbers
take 10 numbers

=> [1,2,3,4,5,6,7,8,9,10]
filter even (takeWhile (<40) numbers)

=> [2,4,6,8,10,...]

recursion (n):
see recursion

fac :: Integer -> Integer
fac 0 = 1
fac n = n * fac (n - 1)
take :: Integer -> [a] -> [a]
take n _ | n <= 0 = []
take _ [] = []
take n (x:xs) = x : take (n-1) xs

W(hy)TF?

referential
transparency

concurrency
concurrency
concurrency

W(ho)TF?

ML-like

Standard ML
OCaml
Haskell

cod
statically typed

pattern matching

code is not data
Has

Lisp-like

Common Lisp
Scheme
Clojure

Has

dynamically typed

homoiconic (code == data)

 lirlistslis

Has

s

ttime to play!ats

