Functional
Programming



W(hat)TF?



. ambda
Calculus



f(x,y)=x"y




mathematical
functions



Math:
b={n|n&€aA n<i0}

Haskell:
b=[n|n<-a,n<=10]



f(x) = x"2

Haskell: f x = x*2
Clojure: (defn f [X] (¥ X X))



variables !
= variable

2X=0=>x=3




functions
don't travel
business
class

first class citizens



partial
application
multiply = -> x,y {x*y}

bytwo = multiply.curry[2]
bytwo[2] # => 4



COMpOoSe

(like you are Mozart)



f(g(x)) = (fog)(x)

Haskell: f. g =\x ->f (g x)



smart people
are lazy

smart languages too



Haskell:

filos =0 : 1 : zipWith (+) fibs (tail fibs)
take 10 fibs
#=>10,1,1,2,3,5,8,13,21,34]

numbers =1 : map (+1) numbers
take 10 numbers
#=>1[1,2,3,4,5,6,7,8,9,10]
filter even (takeWhile (<40) numbers)
#=>1[2,4,6,8,10,...]



recursion (n):
see recursion



fac :: Integer -> Integer
fac 0 = 1

facn=n*fac (n-1)

take :: Integer -> [a] -> [a]
taken | n<=0=]]

take _[] =]

take n (x:xs) = x : take (n-1) xs



W(hy)TF?



referential
{ransparency



concurrency
concurrency
concurrency



W(ho)TF?



IVIL-like

Standard ML
OCam|
Haskell



statically typed
pattern matching

code Is not data



isp-like

Common Lisp
Scheme
Clojure



dynamically typed
homoiconic (code == data)

lists



time to play!



